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Grand unified theories can admit cosmic strings with fermion zero modes. Such
zero modes result in the string being current-carrying and the formation of stable
remnants, vortons. However, the string zero modes do not automatically survive
subsequent phase transitions. In this case the vortons dissipate. It is possible that
the dissipating cosmic vortons create the observed baryon asymmetry of the
universe. We show that fermion zero modes are an automatic consequence cosmic
strings in supersymmetric theories. Since supersymmetry is not observed in nature,
we consider possible supersymmetry- breaking terms. Some of these terms result
in the zero modes being destroyed. We calculate the baryon asymmetry generated
by the consequent dissipating cosmic vortons. If the supersymmetry- breaking
scale is high enough, then the dissipating cosmic vortons could account for the
observed baryon asymmetry.

1. INTRODUCTION

Many particle physics theories admit cosmic strings. For most cosmolog-
ical studies the simple abelian Higgs model is used as a prototypical cosmic

string theory. However, in realistic particle physics theories the situation is

more complicated. The resulting cosmic strings can have a rich microstructure.

Additional features can be aquired at the string core at each subsequent

symmetry breaking. This additional microstructure can, in some cases, be

used to constrain the underlying particle physics theory to ensure consistency
with standard cosmology. For example, if the theory admits cosmic strings

which aquire fermion zero modes, or bose condensates, either at formation

or due to a subsequent symmetry, then the zero modes can be excited and

will move up or down the string, depending on whether they are left- or
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right-movers. This will result in the string carrying a current [1 ]. An initially

weak current on a string loop will be amplified as the loop contracts. The

current could become sufficiently strong to halt the contraction of the loop,
preventing it from decaying. A stable state, or vorton [2 ], is formed. The

density of vortons is tightly constrained by cosmological requirements. For

example, if vortons are sufficiently stable so that they survive until the present

time, then we require that the universe is not vorton-dominated. However,

if vortons only survive a few minutes, then they can still have cosmological

implications. We then require that the universe be radiation-dominated at
nucleosynthesis. These requirements have been used in ref. 3 to constrain

such models.

Vortons are classically stable [4 ], but the quantum stability is an open

question. It has been assumed that, if vortons decay, they do so by quantum

mechanical tunneling. This would result in them being very long-lived. How-

ever, in the case of fermion superconductivity, the existence of fermion zero
modes at high energy does not guarantee that such modes survive subsequent

phase transitions. The disappearance of such zero modes could give another

channel for the resulting vortons to decay. Fermion zero modes could also

be created at subsequent phase transitions. It is thus necessary to trace the

microphysics of the cosmic string from formation through all subsequent
phase transitions in the history of the universe.

For example, many popular particle physics theories above the electro-

weak scale are based on supersymmetry. Such theories can also admit cosmic

string solutions [5]. Since supersymmetry is a natural symmetry between

bosons and fermions, the fermion partner of the Higgs field forming the

cosmic string is a zero mode. Thus, the particle content and interactions
dictated by supersymmetry naturally give rise to current-carrying strings.

Gauge symmetry breaking can arise either by introduction of a superpotential

or by means of a Fayet±Iliopoulos term. In both cases fermion zero modes

arise.

However, supersymmetry is not observed in nature and must therefore

be broken. We consider general soft supersymmetry-breaking terms that could
arise and consider the resulting effect of these on the fermion zero modes.

For most soft breaking terms, the zero modes are destroyed. Hence, any

vortons formed would dissipate. However, in the case of gauge symmetry

breaking via a Fayet±Iliopoulos term, the zero modes, and hence vortons,

survive supersymmetry breaking. Hence, supersymmetric theories which

break a U(1) symmetry this way would result in cosmologically stable vortons,
and would therefore be ruled out. However, in the more general case, the

problem of cosmic vortons seems to solve itself. That is to say, vortons

will be formed at high energy, but will dissipate after the supersymmetry-

breaking scale.
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If the underlying supersymmetric theory is a grand unified one, then in

the string core the grand unified symmetry is restored and typical grand

unified processes will be unsuppressed in the string core. Once the vortons

decay, the grand unified particles will be released. Their out-of-equilibrium

decay results in a baryon asymmetry being produced. Depending on the scale

of supersymmetry breaking, the baryon asymmetry produced could account

for that required by nucleosynthesis.

In this paper, I address this problem. I first review cosmic strings in

supersymmetric theories, displaying the string zero modes [5 ]. I then consider

the effect of supersymmetry breaking on these zero modes, showing that the

zero modes are destroyed in the general case [6 ]. The vorton density is

estimated in these supersymmetric theories. I show that the underlying theory

can be constrained in the case where the vortons are stable. If the vortons

are unstable, I estimate resulting baryon asymmetry from dissipating cosmic

vortons. I also take into account the change in entropy density from the

vorton decay and show that, for supersymmetry breaking just before the

vorton density dominates that of radiation, this results in a baryon asymmetry,

in agreement with observation [7 ].

2. COSMIC STRINGS IN SUPERSYMMETRIC THEORIES

Consider supersymmetric versions of the spontaneously broken gauged

U(1) abelian Higgs model. These models are related to or are simple exten-

sions of those found in ref. 8. In superfield notation, such a theory consists

of a vector superfield V and m chiral superfields F i (i 5 1, . . . , m), with

U(1) charges qi. In the Wess±Zumino gauge these may be expressed in

component notation as

V(x, u , u Å ) 5 2 ( u s m u Å )A m (x) 1 i u 2 u Å l Å (x) 2 i u Å 2 u l (x) 1
1

2
u 2 u Å 2 D(x) (2.1)

F i (x, u , u Å ) 5 f i (y) 1 ! 2 u c i (y) 1 u 2Fi (y) (2.2)

where y m 5 x m 1 i u s m u Å . Here, f i are complex scalar fields and A m is a vector

field. These correspond to the familiar bosonic fields of the abelian Higgs

model. The fermions c i a , l Å a , and l a are Weyl spinors and the complex

bosonic fields Fi and real bosonic field D are auxiliary fields. Finally, u and

u Å are anticommuting superspace coordinates. In the component formulation

of the theory one eliminates Fi and D via their equations of motion and

performs a Grassmann integration over u and u Å . Now define
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D a 5
-

- u a 1 i s m
a a Ç u Å a Ç - m

DÅ a Ç 5
-

- u Å a Ç 2 i u a s m
a a Ç - m

W a 5 2
1

4
DÅ 2 D a V (2.3)

where D a and DÅ a Ç are the supersymmetric covariant derivatives and W a is
the field strength chiral superfield. The superspace Lagrangian density for

the theory is then given by

+Å 5
1

4
(W a W a ) u 2 1 WÅ a Ç WÅ a Ç ) u Å 2)

1 ( F Å i egq iV F i) ) u 2 u 2 1 W( F i) ) u 2 1 WÅ ( F Å i) ) u Å 2 1 k D (2.4)

In this expression W is the superpotential, a holomorphic function of the

chiral superfields (i.e., a function of F i only and not F Å i) and W ) u 2 indicates

the u 2 component of W. The term linear in D is known as the Fayet±Iliopoulos

term [9 ]. Such a term can only be present in a U(1) theory, since it is not
invariant under more general gauge transformations.

For a renormalizable theory, the most general superpotential is

W( F i) 5 ai F i 1
1

2
bij F i F j 1

1

3
cijk F i F j F k (2.5)

with the constants bij, cijk symmetric in their indices. This can be written in

component form as

W( f i , c j , Fk) ) u 2 5 ai Fi 1 bij 1 Fi f j 2
1

2
c i c j 2 1 cijk(Fi f j f k 2 c i c j f k) (2.6)

and the Lagrangian (2.4) can then be expanded in Wess-Zumino gauge in
terms of its component fields using (2.2) and (2.1). The equations of motion

for the auxiliary fields are

F *i 1 ai 1 bij f j 1 cijkf j f k 5 0 (2.7)

D 1 k 1
g

2
qi f Å i f i 5 0 (2.8)

Using these to eliminate F i and D, we obtain the Lagrangian density in

component form as
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+ 5 +B 1 +F 1 +Y 2 U (2.9)

with

+B 5 (Di*
m f Å i)(D

i m f i) 2
1

4
F m n F m n (2.1 0)

+F 5 2 i c i s m Di*
m c Å i 2 i l i s m - m l Å i (2.11)

+Y 5
ig

! 2
qi f Å i c i l 2 1 12 bij 1 cijkf k 2 c i c j 1 (c.c.) (2.12)

U 5 ) F i ) 2 1
1

2
D2

5 ) ai 1 bij f j 1 cijk f j f k ) 2 1
1

2 1 k 1
g

2
qi f Å i f i 2

2

(2.13)

where Di
m 5 - m 1 1±2 igqi A m and F m n 5 - m A n 2 - n A m .

Now consider spontaneous symmetry breaking in these theories. Each

term in the superpotential must be gauge invariant. This implies that ai Þ 0

only if qi 5 0, bij Þ 0 only if qi 1 qj 5 0, and cijk Þ 0 only if qi 1 qj 1
qk 5 0. The situation is a little more complicated than in non-SUSY theories,

since anomaly cancellation in SUSY theories implies the existence of more

than one chiral superfield (and hence Higgs field). In order to break the
gauge symmetry, one may either induce SSB through an appropriate choice

of superpotential, or, in the case of the U(1) gauge group, one may rely on

a nonzero Fayet±Iliopoulos term.

I shall refer to the theory with superpotential SSB (and, for simplicity,

zero Fayet±Iliopoulos term) as theory F and the theory with SSB due to a
nonzero Fayet±Iliopoulos term as theory D. Since the implementation of

SSB in theory F can be repeated for more general gauge groups, I expect

that this theory will be more representative of general defect-forming theories

than theory D, for which the mechanism of SSB is specific to the U(1)

gauge group.

2.1. Theory F: Vanishing Fayet ± Iliopoulos Term

The simplest model with vanishing Fayet±Iliopoulos term ( k 5 0) and

spontaneously broken gauge symmetry contains three chiral superfields. It
is not possible to construct such a model with fewer superfields which does

not either leave the gauge symmetry unbroken or possess a gauge anomaly.

The fields are two charged fields F 6 , with respective U(1) charges q 6 5
6 1, and a neutral field, F 0. A suitable superpotential is then
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W( F i) 5 m F 0( F + F 2 2 h 2) (2.14)

with h and m real. The potential U is minimized when Fi 5 0 and D 5 0.

This occurs when f 0 5 0, f + f 2 5 h 2, and ) f + ) 2 5 ) f 2 ) 2. Thus we may

write f 6 5 h e 6 i a , where a is some function. We shall now seek the Nielsen±
Olesen [10] solution corresponding to an infinite straight cosmic string. We

proceed in the same manner as for nonsupersymmetric theories. Consider

only the bosonic fields (i.e., set the fermions to zero) and in cylindrical polar

coordinates (r, w , z) write

f 0 5 0 (2.15)

f + 5 f *2 5 h ein w f (r) (2.16)

A m 5 2
2

g
n

a(r)

r
d w

m (2.17)

F 6 5 D 5 0 (2.18)

F 0 5 m h 2(1 2 f (r)2) (2.19)

so that the z axis is the axis of symmetry of the defect. The profile functions

f (r) and a(r), obey

f 9 1
f 8

r
2 n2 (1 2 a)2

r 2 5 m 2 h 2( f 2 2 1) f (2.2 0)

a9 2
a8

r
5 2 g2 h 2(1 2 a) f 2 (2.21)

with boundary conditions

f ( 0) 5 a( 0) 5 0

lim
r ® `

f (r) 5 lim
r ® `

a(r) 5 1

Note here, in passing, an interesting aspect of topological defects in SUSY

theories. The ground state of the theory is supersymmetric, but spontaneously

breaks the gauge symmetry, while in the core of the defect the gauge symmetry

is restored but, since ) F i ) 2 Þ 0in the core, SUSY is spontaneously broken there.

We have constructed a cosmic string solution in the bosonic sector of
the theory. Now consider the fermionic sector. With the choice of superpo-

tential (2.14) the component form of the Yukawa couplings becomes

+Y 5 i
g

! 2
( f + c + 2 f 2 c 2 ) l 2 m ( f 0c + c 2 1 f + c 0c 2 1 f 2 c 0c +)

1 (c.c.) (2.22)
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As with a nonsupersymmetric theory, nontrivial zero-energy fermion

solutions can exist around the string. Consider the fermionic ansatz

c i 5 1 10 2 c i (r, w ) (2.23)

l 5 1 10 2 l (r, w ) (2.24)

If we can find solutions for the c i (r, w ) and l (r, w ), then, following Witten,

we know that solutions of the form

C i 5 c i (r, w )e x (z 1 t), L 5 l (r, w )e x (z 1 t) (2.25)

with x some function, represent left-moving superconduct ing currents flowing

along the string at the speed of light. Thus, the problem of finding the zero

modes is reduced to solving for the c i (r, w ) and l (r, w ).

The fermion equations of motion derived from (2.9) are four coupled

equations given by

e 2 i w 1 - r 2
i

r
- w 2 l 2

g

! 2
h f (ein w c 2 2 e 2 in w c +) 5 0 (2.26)

e 2 i w 1 - r 2
i

r
- w 2 c 0 1 i m h f (ein w c 2 1 e 2 in w c +) 5 0 (2.27)

e 2 i w 1 - r 2
i

r
- w 6 n

a

r 2 c 6 1 h fempin w 1 i m c 0 6
g

! 2
l 2 5 0 (2.28)

The corresponding equations for the lower fermion components can be

obtained from those for the upper components by complex conjugation, and

putting n ® 2 n. The superconducting current corresponding to this solution
[like (2.25), but with x (t 2 z) ] is right-moving.

We may enumerate the zero modes using an index theorem [11], as

discussed further in ref. 12. This gives 2n independent zero modes, where n
is the winding number of the string. However, in supersymmetric theories

we can calculate them explicitly using SUSY transformations. This relates

the fermionic components of the superfields to the bosonic ones and we may
use this to obtain the fermion solutions in terms of the background string

fields. A SUSY transformation is implemented by the operator G 5 e j Q 1 j Q,

where j a are Grassmann parameters and Q a are the generators of the SUSY

algebra, which we may represent by
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Q a 5
-

- u a 2 i s m
a a Ç u a Ç - m (2.29)

Q a Ç 5
-

- u a Ç
2 i s m a Ç a u a - m (2.3 0)

In general such a transformation will induce a change of gauge. It is

then necessary to perform an additional gauge transformation to return to

the Wess±Zumino gauge in order to easily interpret the solutions. For an

Abelian theory, supersymmetric gauge transformations are of the form

F i ® e 2 i L qi F i (2.31)

F i ® ei L Å qi F i (2.32)

V ® V 1
i

g
( L 2 L ) (2.33)

where L is some chiral superfield.

Consider performing an infinitesimal SUSY transformation on (2.19),

using - m A m 5 0. The appropriate L to return to Wess±Zumino gauge is

L 5 ig j s m u A m ( y) (2.34)

The component fields then transform in the following way:

f 6 ( y) ® f 6 ( y) 1 2i u s m j D m f 6 ( y) (2.35)

u 2F 0( y) ® u 2F 0( y) 1 2 u j F 0( y) (2.36)

2 u s m u A m (x) ® 2 u s m u A m (x)

1 i u 2 u
1

2
s m s n j F m n (x) 2 i u 2 u

1

2
s m s n j F m n (x) (2.37)

Writing everything in terms of the background string fields, we find that

only the fermion fields are affected to first order by the transformation. These

are given by

l a ® 2na8

gr
i( s z) b

a j b (2.38)

( c 6 ) a ® ! 2 1 if 8 s rmp
n

r
(1 2 a) f s w 2 a a Ç

j a Ç h e 6 in w (2.39)

( c 0) a ® ! 2 m h 2(1 2 f 2) j a (2.4 0)
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where we have defined

s w 5 1 0 2 ie 2 i w

iei w 0 2 (2.41)

s r 5 1 0 e 2 i w

ei w 0 2 (2.42)

Let us choose j a so that only one component is nonzero. Taking j 2 5
0 and j 1 5 2 i d /( ! 2 h ), where d is a complex constant, the fermions become

l 1 5 d
n ! 2

g h
a8

r
(2.43)

( c +)1 5 d * F f 8 1
n

r
(1 2 a)f G ei(n 2 1) w (2.44)

( c 0)1 5 2 i d m h (1 2 f 2) (2.45)

( c 2 )1 5 d * F f 8 2
n

r
(1 2 a)f G e 2 i(n 1 1) w (2.46)

It is these fermion solutions which are responsible for the string superconduc-

tivity. Similar expressions can be found when j 1 5 0. It is clear from these

results that the string is not invariant under supersymmetry, and therefore

breaks it. However, since f 8(r), a8(r), 1 2 a(r), and 1 2 f 2(r) are all approxi-
mately zero outside of the string core, the SUSY breaking and the zero modes

are confined to the string. We note that this method gives us two zero-mode

solutions. Thus, for a winding-number-one string, we obtain the full spectrum,

whereas for strings of higher winding number, only a partial spectrum is

obtained.

The results presented here can be extended to non-Abelian gauge theo-
ries. This is done in ref. 6. The results are very similar to those presented

here, so I leave the interested reader to consult the original paper.

2.2. Theory D: Nonvanishing Fayet ± Iliopoulos Term

Now consider theory D in which there is just one primary charged chiral

superfield involved in the symmetry breaking and a nonzero Fayet±Iliopoulos

term. In order to avoid gauge anomalies, the model must contain other charged
superfields. These are coupled to the primary superfield through terms in

the superpotential such that the expectation values of the secondary chiral

superfields are dynamically zero. The secondary superfields have no effect

on SSB and are invariant under SUSY transformations. Therefore, for the
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rest of this section I shall concentrate on the primary chiral superfield which

mediates the gauge symmetry breaking.

Choosing k 5 2 1±2 g h 2, the theory is spontaneously broken and there
exists a string solution obtained from the ansatz

f 5 h ein w f(r) (2.47)

A m 5 2
2

g
n

a(r)

r
d w

m (2.48)

D 5
1

2
g h 2(1 2 f 2) (2.49)

F 5 0 (2.5 0)

The profile functions f(r) and a(r) then obey the first-order equations

f 8 5 n
1 2 a

r
f (2.51)

n
a8

r
5

1

4
g2 h 2(1 2 f 2) (2.52)

Now consider the fermionic sector of the theory and perform a SUSY

transformation, again using L as the gauge function to return to Wess±Zumino

gauge. To first order this gives

l a ® 1

2
g h 2(1 2 f 2)i(I 1 s z) b

a j b (2.53)

c a ® ! 2
n

r
(1 2 a) f (i s r 2 s w ) a a Ç j a Ç h ein w (2.54)

If j 1 5 0, both these expressions are zero. The same is true of all higher
order terms, and so the string is invariant under the corresponding transforma-

tion. For other j , taking j 1 5 2 i d / h gives

l 1 5 d g h (1 2 f 2) (2.55)

c 1 5 2 ! 2 d *
n

r
(1 2 a) f ei(n 2 1) w (2.56)

Thus supersymmetry is only half broken inside the string. This is in contrast

to theory F, which fully breaks supersymmetry in the string core. The theories
also differ in that theory D’ s zero modes will only travel in one direction,

while the zero modes of theory F (which has twice as many) travel in both

directions. In both theories the zero modes and SUSY breaking are confined

to the string core.
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Thus, a necessary feature of cosmic strings in SUSY theories is that

supersymmetry is broken in the string core and the resulting strings have

fermion zero modes. As a consequence, cosmic strings arising in SUSY
theories are automatically current-carrying. In general, cosmic strings arise

as infinite strings or as closed loops, The usual non-current -carrying string

loops decay via gravitational radiation. However, in current-carrying strings

loops do not necessarily suffer the same fate. The loops could be stabilized

by the angular momentum of the current carriers, forming a stable, vorton,

configuration. Vortons are classically stable objects [4 ], though their quantum
mechanical stability is an open question. The presence of vortons puts severe

constraints on the underlying theory since the density of vortons could over-

close the universe if vortons are stable enough to survive to the present time.

If they only live for a few minutes, then the vorton density could affect

nucleosynthesis. This is discussed in detail in ref. 3. However, in some

theories the vorton problem solves itself.

3. SOFT SUSY BREAKING

Supersymmetry is not observed in nature. Hence, it must be broken.

Supersymmetry breaking is achieved by adding soft SUSY-breaking terms
which do not induce quadratic divergences.

In a general model, one may obtain soft SUSY-breaking terms by the

following prescription.

1. Add arbitrary mass terms for all scalar particles to the scalar

potential.

2. Add all trilinear scalar terms in the superpotential, plus their Her-
mitian conjugates, to the scalar potential with arbitrary coupling.

3. Add mass terms for the gauginos to the Lagrangian density.

Since the techniques we have used are strictly valid only when SUSY

is exact, it is necessary to investigate the effect of these soft terms on the

fermionic zero modes we have identified.
As already commented, the existence of the zero modes can be seen as

a consequence of an index theorem [11 ]. The index is insensitive to the size

and exact form of the Yukawa couplings, as long as they are regular for small

r, and tend to a constant at large r. In fact, the existence of zero modes relies

only on the existence of the appropriate Yukawa couplings and that they have

the correct w dependence. Thus there can only be a change in the number
of zero modes if the soft breaking terms induce specific new Yukawa couplings

in the theory, and it is this that we must check for. Further, it was conjectured

in ref. 11 that the destruction of a zero mode occurs only when the relevant

fermion mixes with another massless fermion.
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I have examined each of our theories with respect to this criterion and

list the results below.

3.1. Theory F

As discussed previously, the superpotential for this theory is

W 5 m F 0( F + F 2 2 h 2) (3.1)

The trilinear and mass terms that arise from soft SUSY breaking are

m2
0) f 0) 2 1 m2

2 ) f 2 ) 2 1 m2
1 ) f + ) 2 1 m M f 0f + f 2 (3.2)

The derivative of the scalar potential with respect to f *0 becomes

f 0( m 2 ) f + ) 2 1 m 2 ) f 2 ) 2 1 m2
0) 1 m M( f + f 2 )* (3.3)

This will be zero at a minimum, and so f 0 Þ 0 only if M Þ 0.

New Higgs mass terms will alter the values of f + and f 2 slightly, but

will not produce any new Yukawa terms. Thus these soft SUSY-breaking

terms have no effect on the existence of the zero modes.

However, the presence of the trilinear term gives f 0 a nonzero expecta-
tion value, which gives a Yukawa term coupling the c + and c 2 fields. This

destroys all the zero modes in the theory since the left- and right-moving

zero modes mix.

For completeness note that a gaugino mass term also mixes the left and

right zero modes, aiding in their destruction.

3.2. Theory D

The U(1) theory with gauge symmetry broken via a Fayet±Iliopoulos

term and no superpotential is simpler to analyze. New Higgs mass terms

have no effect, as in the above case, and there are no trilinear terms. Further,

although the gaugino mass terms affect the form of the zero-mode solutions,
they do not affect their existence, and so, in theory D, the zero modes remain

even after SUSY breaking. For this class of theories, the strings remain

current-carrying and hence have a potential vorton problem. This could lead

to the theories being in conflict with cosmology.

4. CURRENT-CARRYING STRINGS AND VORTONS

For the theories considered in the previous sections, the strings become

current-carrying due to fermion zero modes as a consequence of supersymme-

try. These zero modes are present in the string core at formation. If we call

the temperature of the phase transition forming the strings Tx, we can estimate
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the vorton density. The more general case to consider would be when the

string becomes current carrying at a subsequent phase transition, but this is

beyond the scope of this paper and I refer the reader to ref. 6.
The string loop is characterized by two currents, the topologically con-

served phase current and the dynamically conserved particle number current.

Thus the string carries two conserved quantum numbers; N is the topologically

conserved integral of the phase current and Z is the particle number. A

nonconducting Kibble-type string loop must ultimately decay by radiative and

frictional drag processes until it disappears completely. However, a conducting
string loop may be saved from disappearance by reaching a state in which

the energy attains a minimum for given nonzero values of N and Z.

It should be emphasized that the existence of such vorton states does

not require that the carrier field be gauge-coupled. If there is indeed a nonzero

charge coupling, then the loop will have a corresponding total electric charge

Q such that the particle number is Z 5 Q/e. However, the important point
is that, even in the uncoupled case where Q vanishes, the particle number Z
is perfectly well defined.

The physical properties of a vorton state are determined by the quantum

numbers N and Z. However, these are not arbitrary. For example, to avoid

decaying completely like a nonconducting loop, a conducting loop must have
a nonzero value for at least one of the numbers N and Z. In fact, one would

expect that both these numbers should be reasonably large compared with

unity to diminish the likelihood of quantum decay by barrier tunneling. There

is a further restriction on the values of their ratio Z/N in order to avoid

spontaneous particle emission as a result of current saturation. In this contribu-

tion I consider the special case where ) Z ) ’ N. These are the so-called
chiral vortons.

For chiral vortons we have

Ev . lvm
2
x (4.1)

In order to evaluate this quantity all that remains is to work out lv.
Assume that vortons are approximately circular with radius given by Rv 5
lv/2 p and angular momentum quantum number J given [13 ] by J 5 NZ.

Thus, eliminating J, one obtains

lv . (2 p )1/2 ) NZ ) 1/2m 2 1
x (4.2)

Thus we obtain an estimate of the vorton mass energy as

Ev . (2 p )1/2 ) NZ ) 1/2mx ’ Nmx (4.3)

where we are assuming the classical description of the string dynamics. This

is valid only if the length lv is large compared with the relevant quantum

wavelengths. This will only be satisfied if the product of the quantum numbers
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N and Z is sufficiently large. A loop that does not satisfy this requirement

will never stabilize as a vorton.

We can now calculate the vorton abundance. Assuming that the string
becomes current-carrying at a scale Tx by fermion zero modes, then one

expects that thermal fluctuations will give rise to a nonzero value for the

topological current ) j ) 2. Hence, a random walk process will result in a spectrum

of finite values for the corresponding string loop quantum numbers N and

Z. Therefore, loops for which these numbers satisfy the minimum length

condition will become vortons. Such loops will ultimately be able to survive
as vortons if the induced current, and consequently N and Z, are sufficiently

large, such that

) NZ ) 1/2 À 1 (4.4)

Any loop that fails to satisfy this condition is doomed to lose all its

energy and disappear.

The total number density of small loops with length and radial extension

of the order of Lmin, the minimum length for vortons, will be not much less
than the number density of all closed loops and hence

n ’ n L 2 3
min (4.5)

where n is a time-dependent parameter. The typical length scale of string

loops at the transition temperature, Lmin(Tx), is considerably greater than

relevant thermal correlation length, T 2 1
x , that characterizes the local current

fluctuations. It is because of this that string loop evolution is modified after

current carrier condensation. Indeed, since Lmin(Tx) À T 2 1
x and loops present

at the time of the condensation satisfy L $ Lmin(Tx), the random walk effect
can build up reasonably large and typically comparable initial values of the

quantum numbers ) Z ) and N. The expected root mean square values produced

in this way from carrier field fluctuations of wavelength l can be estimated as

) Z ) ’ N ’ ! L

l
(4.6)

where l ’ T 2 1
x . Thus, one obtains

) Z ) ’ N ’ ! Lmin(Tx)Tx
À 1 (4.7)

For current condensation during the friction-dominated regime this

requirement is always satisfied.
Therefore, the vorton mass density is

r v ’ Nmxnv (4.8)
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In the friction-dominated regime the string is interacting with the sur-

rounding plasma. We can estimate Lmin in this regime as the typical length

scale below which the microstructure is smoothed [3 ]. This then gives the
quantum number N,

N ’ 1 mP

b Tx 2
1/4

(4.9)

where b is a drag coefficient for the friction-dominated era that is of order

unity. We then obtain the number density of mature vortons

nv ’ n
* 1 b Tx

mP 2
3/2

T 3 (4.1 0)

This gives the resulting mass density of the relic vorton population to be

r v ’ n
* 1 b Tx

mP 2
5/4

TxT
3 (4.11)

4.1. The Nucleosynthesis Constraint

One of the most robust predictions of the standard cosmological model

is the abundances of the light elements that were fabricated during primordial

nucleosynthesis at a temperature TN ’ 10
2 4 GeV.

In order to preserve this well-established picture, it is necessary that the
energy density in vortons at that time, r v(TN), should have been small com-

pared with the background energy density in radiation, r N ’ g*T 4
N, where

g* is the effective number of degrees of freedom. Assuming that carrier

condensation occurs during the friction damping regime and that g* has

dropped to a value of order unity by the time of nucleosynthesis, this gives

n
*
g* 2 1

s b 5/4m 2 5/4
P T 9/4

x ¿ T N (4.12)

The case for which strings become current-carrying at formation has

been studied previously and yields rather strong restrictions for very long-

lived vortons [14]. If it is only assumed that the vortons survive for a few

minutes, which is all that is needed to reach the nucleosynthesis epoch, we

obtain a much weaker restriction,

1 n *
g*s 2

4/9

Tx
¿ 1 mP

b 2
5/9

T 4/9
N (4.13)

Taking g*s ’ 102 yields the inequality

Tx # ( n
*
)

2 4/9 b 2 5/9 3 109 GeV (4.14)
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This is the condition that must be satisfied by the formation temperature of

cosmic strings that become superconducting immediately, subject to the rather

conservative assumption that the resulting vortons last for at least a few
minutes. If we assume that the net efficiency factor ( n

*
) 2 4/9 and drag factor

b 2 5/9 are of order unity, this condition rules out the formation of such strings

during any conceivable GUT transition, but is consistent with their formation

at temperatures close to that of the electroweak symmetry-breaking transition.

4.2. The Dark Matter Constraint

Let us now consider the rather stronger constraints that can be obtained
if at least a substantial fraction of the vortons are sufficiently stable to last

until the present epoch. It is generally accepted that the virial equilibrium of

galaxies and particularly of clusters of galaxies requires the existence of a

cosmological distribution of ª darkº matter. This matter must have a density

considerably in excess of the baryonic matter density, r b ’ 10
2 31 g/cm3. On

the other hand, on the same basis, it is also generally accepted that to be
consistent with the formation of structures such as galaxies it is necessary

that the total amount of this ª darkº matter should not greatly exceed the

critical closure density, namely

r c ’ 10
2 29 g/cm3 (4.15)

As a function of temperature, the critical density scales like the entropy

density, so that it is given by

r c(T ) ’ g*mcT
3 (4.16)

where mc is a constant mass factor. For comparison with the density of vortons

that were formed at a scale Tx we can estimate this to be

g*s mc ’ 102 26mP ’ 102 eV (4.17)

The general dark matter constraint is

V v [
r v

r c

# 1 (4.18)

In the case of vortons formed as a result of condensation during the

friction damping regime the relevant estimate for the vortonic dark matter

fraction is obtainable from (4.11) as

V v ’ b 5/4 1 n *
mP

g*s mc 2 1 Tx

mP 2
9/4

(4.19)

The formula (4.19) is applicable to the case considered in earlier work
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[14], in which it was supposed that vortons sufficiently stable to last until

the present epoch, with the strings becoming current-carrying at formation,

as in the case of supersymmetric theories. In this case one obtains

b 5/9 Tx

mP 1 n *
mP

g*s mc 2
4/9

# 1 (4.2 0)

Substituting the estimates above, we obtain

Tx # ( n
*
)

2 4/9 b 2 5/9 3 107 GeV (4.21)

This result is based on the assumption that the vortons in question are

stable enough to survive until the present day. Thus, this constraint is naturally
more severe than its analogue in the previous section. It is to be remarked

that vortons produced in a phase transition occurring at or near the limit that

has just been derived would give a significant contribution to the elusive

dark matter in the universe. However, if they were produced at the electroweak

scale, i.e., with Tx ’ Ts ’ TEW, where TEW ’ 102 GeV, then they would
constitute such a small dark matter fraction, V v ’ 102 9, that they would be

very difficult to detect.

These constraints are very general for long-lived vortons. However, if

the microphysics of the underlying theory is such that the fermion zero modes

are destroyed by subsequent phase transitions, then an entirely different

situation pertains. For example, in our F-type SUSY theory, the zero modes
did not survive supersymmetry breaking. In this case, the current, and hence

the resulting vortons, would dissipate. We turn to this case in the next section.

If the zero modes do survive SUSY breaking, as in the case of our D-type

theory, then the theory faces a vorton problem. It seems possible that such

theories are in conflict with observation.

5. DISSIPATING COSMIC VORTONS

In general, SUSY breaking occurs at a fairly low energy, in which case

a sizable random current will have built up in the string loops, resulting from

string self-intersections and intercommuting. When the string self-intersects

or intercommutes there is a finite probability that the Fermi levels will be
excited. This produces a distortion in the Fermi levels, resulting in a current

flow. As a consequence, vortons will form prior to SUSY breaking.

For strings that are formed at a temperature Tx and become superconduct-

ing at formation, the vorton number density is

nv 5 n
* 1 b Tx

mP 2
3/2

T 3 (5.1)
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while the vorton mass density is

r v 5 n
* 1 b Tx

mP 2
5/4

TxT
3 (5.2)

where n * and b are factors of order unity.

In the F-type theory, the zero modes do not survive SUSY breaking.

As a conequence, the current decays, angular momentum is lost, and the

vorton shrinks and eventually decays. As the vortons decay, grand unified
particles are released from the string core. Since these GUT particles are

also unstable, they also decay, but in a baryon-number-violating manner. As

they decay, they create a net baryon asymmetry.

Given the number density of vortons at the SUSY-breaking transition,

we can estimate the baryon asymmetry produced by vorton decay using

nb

s
5

nv

s
e K (5.3)

where s is the entropy density, e is the baryon asymmetry produced by a

GUT particle, and K is the number of GUT particles per vorton. We need to

consider two cases: First, the vortons may decay before they dominate the

energy density of the universe and we do not need to know the time scale
for vorton decay since nv/s is an invariant quantity. Alternatively, if the vorton

energy density does dominate the energy density of the universe, we must

modify the temperature evolution of the universe to allow for entropy

generation.

Assuming that the universe is radiation-dominated until after the electro-

weak phase transition, the temperature of the universe is simply that of the
standard hot big bang. We can estimate the entropy density following vorton

decay using the standard result

s 5
2 p 2

45
g*T 3 (5.4)

where g* is the effective number of degrees of freedom at the electroweak

scale ( . 100). The vorton-to-entropy ratio is then

nv

s
. 1 Tx

mP 2
3/2

45

2 p 2g*
, 5 3 102 6 (5.5)

for Tx , 1016 GeV.
The number of GUT particles per vorton is obtained from (4.3),

K 5 1 b Tx

mP 2
2 1/4

, 10 (5.6)
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and we have

nb

s
, 10

2 5 e (5.7)

Alternatively, the vorton energy density may come to dominate and we

must allow for a nonstandard temperature evolution. The temperature of

vorton-radiation equality, Tveq, is given by

Tveq 5
n
*

g* 1 b Tx

mP 2
5/4

Tx (5.8)

If we assume that the vortons decay at some temperature Td and reheat the

universe to a temperature Trh, we have

gÃ*T 4
rh 5 r v(T 5 Td) 5 n

* 1 b Tx

mP 2
5/4

TxT
3
d (5.9)

where gÃ* is the number of degrees of freedom for this lower temperature.

This reheating and entropy generation leads to an extra baryon dilution factor.

In this case the baryon asymmetry produced by the decaying vortons is

given by

nb

s
5

nv

s
K e F g*

gÃ*

Teq

Td G 2 3/4

(5.1 0)

where the entropy s is that of the standard big bang model. The universe

now evolves as in the standard big bang model and nb /s remains invariant.

Using the above results, the asymmetry becomes

nb

s
5 e 1 n *

gÃ*3

g*84 2
1/4

b 5/46 1 T 12
d

m5
PT

7
x 2

1/16

(5.11)

This form is valid if the vortons dominate the energy density of the

universe before they decay; if this is not the case, the dilution factor is absent

and we have

nb

s
.

e

g*8 1 Tx

mP 2
5/4

(5.12)

as above.
The maximal asymmetry produced is if the vortons decay just before

they dominate the energy density. This requires Td $ 106 GeV for grand

unified strings. In this case, since e is of order 0.01 in many GUT theories,

the mechanism can easily produce
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nb

s
. 102 10 (5.13)

as required by nucleosynthesis.

6. DISCUSSION

In this contribution I have considered the microphysics of cosmic strings

arising in physical particle physics theories. In the first part I concentrated on
cosmic strings in supersymmetric theories, uncovering many novel features,

including the possibility of them carrying persistent currents. I then considered

the fate of current-carrying string loops, showing that they form stable vortons.

I was able to use this to constrain the underlying theory. I then considered

the possibility, suggested in the first part, that the vortons could dissipate

and, in doing so, create the observed baryon asymmetry.
In particular I investigated the structure of cosmic string solutions to

supersymmetric abelian Higgs models. For completeness I analyzed two

models, differing by their method of spontaneous symmetry breaking. How-

ever, I expect theory F to be more representative of general defect-forming

theories, since the SSB employed there is not specific to Abelian gauge groups.
I have shown that although SUSY remains unbroken outside the string,

it is broken in the string core (in contrast to the gauge symmetry, which is

restored there). In theory F supersymmetry is broken completely in the string

core by a nonzero F term, while in theory D supersymmetry is partially

broken by a nonzero D term. I demonstrated that, due to the particle content

and couplings dictated by SUSY, the cosmic string solutions to both theories
are superconduct ing in the Witten sense. I believe this to be quite a powerful

result, that all supersymmetric Abelian cosmic strings are superconduct ing

due to fermion zero modes. An immediate and important application of the

results of the present paper is that SUSY GUTs which break to the standard

model and yield Abelian cosmic strings [such as some breaking schemes of

SO(10) ] must face strong constraints from cosmology [3 ].
While I performed this analysis for an Abelian string, the tech-

niques are quite general and the results for non-Abelian theories are very

similar.

I also analyzed the effect of soft SUSY breaking on the existence of

fermionic zero modes. The Higgs mass terms did not affect the existence of

the zero modes. In the theories with F-term symmetry breaking, gaugino
mass terms destroyed all zero modes which involved gauginos, and trilinear

terms created extra Yukawa couplings which destroyed all the zero modes

present. In the theory with D-term symmetry breaking, the zero modes were

unaffected by the SUSY-breaking terms. If the remaining zero modes survive
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subsequent phase transitions, then stable vortons could result. Such vortons

would dominate the energy density of the universe, rendering the underlying

GUT cosmologically problematic.

Therefore, although SUSY breaking may alleviate the cosmological

disasters faced by superconduct ing cosmic strings [3 ], there are classes of

string solution for which zero modes remain even after SUSY breaking. It

remains to analyze all the phase transitions undergone by specific SUSY

GUT models to see whether or not fermion zero modes survive down to the

present time. If the zero modes do not survive SUSY breaking, the universe

could experience a period of vorton domination beforehand, and then reheat

and evolve as normal afterward.

I then went on to calculate the remnant vorton density, assuming that

the strings become current-carrying at formation, as is the case for the super-

symmetric theories under consideration. I used this density to constrain the

underlying theory for the case of a persistent current. Two separate cases

were considered. If the vortons survive for only a few minutes, I demanded

that the universe be radiation-dominated throughout nucleosynthesis to con-

strain the scale of symmetry breaking to be less than 109 GeV. However, if

the vortons survive to the present time, then one can demand that they do

not overclose the universe. In this case one obtains a much stronger constraint

that the scale of symmetry breaking must be less than 107 GeV. This suggests

that GUT theories based on D-type supersymmetric theories, which would

automatically predict the existence of cosmic strings with the properties we

have uncovered, are in conflict with observation.

On the constructive side, I showed that it is possible for various conceiv-

able symmetry-breaking schemes to give rise to a remnant vorton density

sufficient to make up a significant portion of the dark matter in the universe.

I also showed that vortons can decay after a subsequent phase transition

and these dissipating vortons can create a baryon asymmetry. For example,

the zero modes in the F-type theories do not automatically survive SUSY

breaking. In this case, the decaying vortons could account for the observed

baryon asymmetry, depending on the scale of supersymmetry breaking. If

the SUSY-breaking scale were just above the electroweak scale, then the

resulting asymmetry may well not be enough. This is due to the fact that

vortons dominate the energy density of the universe long before they decay.

Their decay results in a reheating of the universe and an increase in the

entropy density. This reheating is unlikely to have any effect on the standard

cosmology following the phase transition. If, however, the scale of SUSY

breaking were such that the vortons did not dominate the energy density of

the universe, then their decay could explain the observed baryon asymmetry

of the universe.
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